home *** CD-ROM | disk | FTP | other *** search
Unknown | 1992-02-26 | 6.8 KB | [X_f1/X_#1] |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| file
| data
| default
|
|
id metadata |
---|
key | value |
---|
macFileType | [X_f1] |
macFileCreator | [X_#1] |
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 40 00 00 00 04 63 75 73 | 70 00 c1 0c 00 02 00 04 |@....cus|p.......|
|00000010| 6d b6 00 01 00 02 00 04 | 00 00 00 24 35 3c 00 24 |m.......|...$5<.$|
|00000020| 39 a4 00 01 00 00 14 20 | 35 2e 30 30 30 30 30 30 |9...... |5.000000|
|00000030| 30 30 30 30 30 65 2d 31 | 20 20 20 04 14 20 36 2e |00000e-1| .. 6.|
|00000040| 32 39 39 36 30 35 32 34 | 39 34 37 65 2d 31 20 20 |29960524|947e-1 |
|00000050| 20 24 14 2d 31 2e 30 30 | 30 30 30 30 30 30 30 30 | $.-1.00|00000000|
|00000060| 30 65 2b 30 20 20 20 01 | 14 20 31 2e 30 30 30 30 |0e+0 .|. 1.0000|
|00000070| 30 30 30 30 30 30 30 65 | 2b 30 20 20 20 24 14 2d |0000000e|+0 $.-|
|00000080| 35 2e 30 30 30 30 30 30 | 30 30 30 30 30 65 2d 31 |5.000000|00000e-1|
|00000090| 20 20 20 0a 14 20 31 2e | 30 30 30 30 30 30 30 30 | .. 1.|00000000|
|000000a0| 30 30 30 65 2b 30 20 20 | 20 18 01 75 00 24 08 90 |000e+0 | ..u.$..|
|000000b0| 00 00 00 00 00 05 a0 03 | 40 81 19 62 00 00 00 00 |........|@..b....|
|000000c0| 01 00 00 04 00 00 00 24 | 2e 0c 00 00 00 00 00 00 |.......$|........|
|000000d0| 14 20 36 2e 32 39 39 36 | 30 35 32 34 39 34 37 65 |. 6.2996|0524947e|
|000000e0| 2d 31 20 20 20 00 00 00 | ff fe 02 00 00 24 36 ec |-1 ...|.....$6.|
|000000f0| 00 03 14 20 35 2e 30 30 | 30 30 30 30 30 30 30 30 |... 5.00|00000000|
|00000100| 30 65 2d 31 20 20 20 00 | 00 00 ff fe 04 00 00 78 |0e-1 .|.......x|
|00000110| 36 ec 00 03 14 20 32 2e | 30 30 30 30 30 30 30 30 |6.... 2.|00000000|
|00000120| 30 30 30 65 2b 30 20 20 | 20 00 00 00 ff fe 05 00 |000e+0 | .......|
|00000130| 00 78 36 ec 00 03 14 20 | 32 2e 35 30 30 30 30 30 |.x6.... |2.500000|
|00000140| 30 30 30 30 30 65 2d 31 | 20 20 20 00 00 01 ff fe |00000e-1| .....|
|00000150| 00 04 00 01 00 02 00 03 | 0a 68 61 6e 64 5f 64 72 |........|.hand_dr|
|00000160| 61 77 6e 04 6d b6 00 01 | 00 02 00 04 00 00 00 24 |awn.m...|.......$|
|00000170| 35 cc 00 24 35 3c 00 04 | 00 00 01 75 35 2e 30 30 |5..$5<..|...u5.00|
|00000180| 30 30 30 30 30 30 30 30 | 30 65 2d 31 20 20 20 04 |00000000|0e-1 .|
|00000190| 01 65 36 2e 32 39 39 36 | 30 35 32 34 39 34 37 65 |.e6.2996|0524947e|
|000001a0| 2d 31 20 20 20 24 14 2d | 35 2e 30 30 30 30 30 30 |-1 $.-|5.000000|
|000001b0| 30 30 30 30 30 65 2b 30 | 20 20 20 01 14 20 35 2e |00000e+0| .. 5.|
|000001c0| 30 30 30 30 30 30 30 30 | 30 30 30 65 2b 30 20 20 |00000000|000e+0 |
|000001d0| 20 24 14 2d 35 2e 30 30 | 30 30 30 30 30 30 30 30 | $.-5.00|00000000|
|000001e0| 30 65 2b 30 20 20 20 0a | 14 20 35 2e 30 30 30 30 |0e+0 .|. 5.0000|
|000001f0| 30 30 30 30 30 30 30 65 | 2b 30 20 20 20 18 01 75 |0000000e|+0 ..u|
|00000200| 00 24 08 90 00 00 00 00 | 00 05 a0 03 40 81 19 62 |.$......|....@..b|
|00000210| 00 00 00 00 02 00 00 0b | 00 bf 01 01 01 e5 00 94 |........|........|
|00000220| 00 24 30 78 42 12 c5 18 | 42 13 93 1c 42 14 d9 24 |.$0xB...|B...B..$|
|00000230| 42 16 a8 0e 42 19 00 56 | 42 1b df e8 42 1f 47 44 |B...B..V|B...B.GD|
|00000240| 42 23 36 28 42 27 ac 88 | 42 2c aa 79 42 32 30 2f |B#6(B'..|B,.yB20/|
|00000250| 42 38 3d f2 42 3e d4 1d | 42 45 f3 05 42 4d 9a df |B8=.B>..|BE..BM..|
|00000260| 42 55 cb a0 42 5e 84 d2 | 42 67 c5 64 42 71 8b 75 |BU..B^..|Bg.dBq.u|
|00000270| 42 7b d4 1a 42 83 4d 92 | 42 88 ed 73 42 8e c6 04 |B{..B.M.|B..sB...|
|00000280| 42 94 d2 a6 42 9b 0d bd | 42 a1 70 9d 42 a7 f3 8a |B...B...|B.p.B...|
|00000290| 42 ae 8d bb 42 b5 35 64 | 42 bb df cf 42 c2 81 76 |B...B.5d|B...B..v|
|000002a0| 42 c9 0e 2b 42 cf 79 44 | 42 d5 b5 d2 42 db b6 d1 |B..+B.yD|B...B...|
|000002b0| 42 e1 6f 6e 42 e6 d3 3a | 42 eb d6 6e 42 f0 6e 1e |B.onB..:|B..nB.n.|
|000002c0| 42 f4 90 7a 42 f8 34 f6 | 42 fb 54 82 42 fd e9 a7 |B..zB.4.|B.T.B...|
|000002d0| 42 ff f0 ac 43 00 b3 d5 | 43 01 27 4f 43 01 53 b7 |B...C...|C.'OC.S.|
|000002e0| 43 01 3a f4 43 00 df dc | 43 00 46 2e 42 fe e5 06 |C.:.C...|C.F.B...|
|000002f0| 42 fc d4 7f 42 fa 67 02 | 42 f7 aa 0d 42 f4 ac 30 |B...B.g.|B...B..0|
|00000300| 42 f1 7c d9 42 ee 2c 14 | 42 ea ca 54 42 e7 68 2d |B.|.B.,.|B..TB.h-|
|00000310| 42 e4 16 18 42 e0 e4 31 | 42 dd e1 fe 42 db 1e 2e |B...B..1|B...B...|
|00000320| 42 d8 a6 6c 42 d6 87 2b | 42 d4 cb 7d 42 d3 7c f6 |B..lB..+|B..}B.|.|
|00000330| 42 d2 a3 93 42 d2 45 a7 | 42 d2 67 d9 42 d3 0d 1f |B...B.E.|B.g.B...|
|00000340| 42 d4 36 c9 42 d5 e4 90 | 42 d8 14 a8 42 da c3 dc |B.6.B...|B...B...|
|00000350| 42 dd ed a4 42 e1 8c 49 | 42 e5 99 01 42 ea 0c 0c |B...B..I|B...B...|
|00000360| 42 ee dc d7 42 f4 02 18 | 42 f9 71 e4 42 ff 21 cf |B...B...|B.q.B.!.|
|00000370| 43 02 83 7f 43 05 8b 20 | 43 08 a2 0c 43 0b c2 6e |C...C.. |C...C..n|
|00000380| 43 0e e6 58 43 12 07 d6 | 43 15 20 e9 43 18 2b 93 |C..XC...|C. .C.+.|
|00000390| 43 1b 21 dd 43 1d fd da | 43 20 b9 af 43 23 4f 99 |C.!.C...|C ..C#O.|
|000003a0| 43 25 b9 f2 43 27 f3 38 | 43 29 f6 17 43 2b bd 6e |C%..C'.8|C)..C+.n|
|000003b0| 43 2d 44 59 43 2e 86 3e | 43 2f 7e d3 43 30 2a 2b |C-DYC..>|C/~.C0*+|
|000003c0| 43 30 84 c8 43 30 8b a1 | 43 30 3c 36 43 2f 94 9f |C0..C0..|C0<6C/..|
|000003d0| 43 2e 93 95 43 2d 38 87 | 43 2b 83 a7 43 29 75 f1 |C...C-8.|C+..C)u.|
|000003e0| 43 27 11 3a 43 24 58 34 | 43 21 4e 72 43 1d f8 69 |C'.:C$X4|C!NrC..i|
|000003f0| 43 1a 5b 68 43 16 7d 8d | 43 12 65 ba 43 0e 1b 7b |C.[hC.}.|C.e.C..{|
|00000400| 43 09 a6 f1 43 05 10 b1 | 43 00 61 a5 42 f7 45 cb |C...C...|C.a.B.E.|
|00000410| 42 ed bb 2d 42 e4 35 7b | 42 da c6 3d 42 d1 7e 2e |B..-B.5{|B..=B.~.|
|00000420| 42 c8 6c f7 42 bf a0 f8 | 42 b7 27 19 42 af 0a a0 |B.l.B...|B.'.B...|
|00000430| 42 a7 55 1f 42 a0 0e 64 | 42 99 3c 7b 42 92 e3 bf |B.U.B..d|B.<{B...|
|00000440| 42 8d 06 ec 42 87 a7 4a | 42 82 c4 d0 42 7c bc b9 |B...B..J|B...B|..|
|00000450| 42 74 e3 cf 42 6d f9 7f | 42 67 f7 78 42 62 d7 03 |Bt..Bm..|Bg.xBb..|
|00000460| 42 5e 91 8a 42 5b 1f a8 | 42 58 7e 47 42 56 a7 ae |B^..B[..|BX~GBV..|
|00000470| 42 55 80 23 0a 65 78 65 | 72 63 69 73 65 5f 31 04 |BU.#.exe|rcise_1.|
|00000480| 6d b6 00 01 00 02 00 04 | 00 00 00 24 36 5c 00 24 |m.......|...$6\.$|
|00000490| 35 cc 00 02 00 00 01 75 | 35 2e 30 30 30 30 30 30 |5......u|5.000000|
|000004a0| 30 30 30 30 30 65 2d 31 | 20 20 20 04 01 75 36 2e |00000e-1| ..u6.|
|000004b0| 32 39 39 36 30 35 32 34 | 39 34 37 65 2d 31 20 20 |29960524|947e-1 |
|000004c0| 20 24 14 2d 35 2e 30 30 | 30 30 30 30 30 30 30 30 | $.-5.00|00000000|
|000004d0| 30 65 2b 30 20 20 20 01 | 14 20 35 2e 30 30 30 30 |0e+0 .|. 5.0000|
|000004e0| 30 30 30 30 30 30 30 65 | 2b 30 20 20 20 24 14 2d |0000000e|+0 $.-|
|000004f0| 35 2e 30 30 30 30 30 30 | 30 30 30 30 30 65 2b 30 |5.000000|00000e+0|
|00000500| 20 20 20 0a 14 20 31 2e | 30 30 30 30 30 30 30 30 | .. 1.|00000000|
|00000510| 30 30 30 65 2b 31 20 20 | 20 18 01 75 00 24 08 90 |000e+1 | ..u.$..|
|00000520| 00 00 00 00 00 05 a0 03 | 40 81 19 62 00 00 00 00 |........|@..b....|
|00000530| 01 00 00 08 00 07 00 24 | 31 50 00 94 00 24 30 78 |.......$|1P...$0x|
|00000540| 14 20 32 2e 30 30 30 30 | 30 30 30 30 30 30 30 65 |. 2.0000|0000000e|
|00000550| 2b 30 20 20 20 00 00 00 | ff fe 05 04 00 01 00 02 |+0 ...|........|
|00000560| 00 03 14 20 35 2e 30 30 | 30 30 30 30 30 30 30 30 |... 5.00|00000000|
|00000570| 30 65 2b 30 20 20 20 00 | 00 00 ff fe 04 04 00 78 |0e+0 .|.......x|
|00000580| 00 02 00 03 14 20 33 2e | 32 30 30 30 30 30 30 30 |..... 3.|20000000|
|00000590| 30 30 30 65 2b 31 20 20 | 20 00 00 01 ff fe 00 04 |000e+1 | .......|
|000005a0| 00 00 00 01 00 03 14 20 | 35 2e 30 30 30 30 30 30 |....... |5.000000|
|000005b0| 30 30 30 30 30 65 2b 30 | 20 20 20 00 00 00 ff fe |00000e+0| .....|
|000005c0| 04 04 00 78 00 01 00 03 | 14 20 32 2e 38 33 36 36 |...x....|. 2.8366|
|000005d0| 32 31 38 35 34 36 33 65 | 2d 31 20 20 20 00 00 00 |2185463e|-1 ...|
|000005e0| ff fe 01 11 00 05 00 01 | 00 03 14 20 35 2e 30 30 |........|... 5.00|
|000005f0| 30 30 30 30 30 30 30 30 | 30 65 2b 30 20 20 20 00 |00000000|0e+0 .|
|00000600| 00 00 ff fe 04 11 00 78 | 00 01 00 03 14 20 31 2e |.......x|..... 1.|
|00000610| 34 31 38 33 31 30 39 32 | 37 33 32 65 2b 30 20 20 |41831092|732e+0 |
|00000620| 20 00 00 00 ff fe 00 02 | 00 03 00 04 00 03 14 20 | .......|....... |
|00000630| 33 2e 33 34 31 38 33 31 | 30 39 32 37 33 65 2b 31 |3.341831|09273e+1|
|00000640| 20 20 20 00 00 00 ff fe | 00 00 00 02 00 06 00 03 | .....|........|
|00000650| 09 66 69 66 74 68 72 6f | 6f 74 31 04 6d b6 00 01 |.fifthro|ot1.m...|
|00000660| 00 02 00 04 00 00 00 24 | 36 ec 00 24 36 5c 00 03 |.......$|6..$6\..|
|00000670| 00 00 14 20 30 2e 30 30 | 30 30 30 30 30 30 30 30 |... 0.00|00000000|
|00000680| 30 65 2b 30 20 20 20 04 | 14 20 30 2e 30 30 30 30 |0e+0 .|. 0.0000|
|00000690| 30 30 30 30 30 30 30 65 | 2b 30 20 20 20 24 14 2d |0000000e|+0 $.-|
|000006a0| 35 2e 30 30 30 30 30 30 | 30 30 30 30 30 65 2b 30 |5.000000|00000e+0|
|000006b0| 20 20 20 01 14 20 35 2e | 30 30 30 30 30 30 30 30 | .. 5.|00000000|
|000006c0| 30 30 30 65 2b 30 20 20 | 20 24 01 75 35 2e 30 30 |000e+0 | $.u5.00|
|000006d0| 30 30 30 30 30 30 30 30 | 30 65 2b 30 20 20 20 0a |00000000|0e+0 .|
|000006e0| 01 75 31 2e 30 30 30 30 | 30 30 30 30 30 30 30 65 |.u1.0000|0000000e|
|000006f0| 2b 31 20 20 20 18 01 75 | 00 24 08 90 00 00 00 00 |+1 ..u|.$......|
|00000700| 00 05 a0 03 40 81 19 62 | 00 00 00 00 01 00 00 14 |....@..b|........|
|00000710| 00 08 00 24 31 78 00 94 | 00 24 30 78 14 20 34 2e |...$1x..|.$0x. 4.|
|00000720| 33 33 36 38 30 38 36 38 | 39 39 34 65 2d 31 39 20 |33680868|994e-19 |
|00000730| 20 00 00 00 ff fe 04 00 | 00 78 00 06 00 03 14 20 | .......|.x..... |
|00000740| 31 2e 30 30 30 30 30 30 | 30 30 30 30 30 65 2b 30 |1.000000|00000e+0|
|00000750| 20 20 20 00 00 00 ff fe | 05 00 00 78 00 06 00 03 | .....|...x....|
|00000760| 14 20 35 2e 30 30 30 30 | 30 30 30 30 30 30 30 65 |. 5.0000|0000000e|
|00000770| 2b 30 20 20 20 00 00 00 | ff fe 05 00 00 78 00 06 |+0 ...|.....x..|
|00000780| 00 03 14 20 32 2e 30 30 | 30 30 30 30 30 30 30 30 |... 2.00|00000000|
|00000790| 30 65 2d 31 20 20 20 00 | 00 01 ff fe 00 03 00 01 |0e-1 .|........|
|000007a0| 00 02 00 03 14 20 32 2e | 31 32 35 33 36 37 35 38 |..... 2.|12536758|
|000007b0| 36 31 37 65 2d 34 20 20 | 20 00 00 01 ff fe 00 04 |617e-4 | .......|
|000007c0| 00 00 00 03 00 03 14 20 | 34 2e 33 33 36 38 30 38 |....... |4.336808|
|000007d0| 36 38 39 39 34 65 2d 31 | 39 20 20 00 00 00 ff fe |68994e-1|9 .....|
|000007e0| 04 04 00 78 00 03 00 03 | 14 20 30 2e 30 30 30 30 |...x....|. 0.0000|
|000007f0| 30 30 30 30 30 30 30 65 | 2b 30 20 20 20 00 00 00 |0000000e|+0 ...|
|00000800| ff fe 05 04 00 78 00 03 | 00 03 14 20 31 2e 30 30 |.....x..|... 1.00|
|00000810| 30 30 30 30 30 30 30 30 | 30 65 2b 30 20 20 20 00 |00000000|0e+0 .|
|00000820| 00 00 ff fe 00 0c 00 05 | 00 06 00 03 14 20 32 2e |........|..... 2.|
|00000830| 31 32 35 33 36 37 35 38 | 36 31 37 65 2d 34 20 20 |12536758|617e-4 |
|00000840| 20 00 00 01 ff fe 03 0c | 00 04 00 07 00 13 14 2d | .......|.......-|
|00000850| 31 2e 36 32 37 36 30 34 | 31 36 36 36 37 65 2d 35 |1.627604|16667e-5|
|00000860| 20 20 20 00 00 00 ff fe | 04 0c 00 78 00 07 00 13 | .....|...x....|
|00000870| 14 20 31 2e 36 32 37 36 | 30 34 31 36 36 36 37 65 |. 1.6276|0416667e|
|00000880| 2d 35 20 20 20 00 00 00 | ff fe 01 01 00 09 00 07 |-5 ...|........|
|00000890| 00 13 14 20 31 2e 30 30 | 30 30 30 30 30 30 30 30 |... 1.00|00000000|
|000008a0| 30 65 2b 30 20 20 20 00 | 00 00 ff fe 05 01 00 09 |0e+0 .|........|
|000008b0| 00 07 00 13 14 20 35 2e | 30 30 30 30 30 30 30 30 |..... 5.|00000000|
|000008c0| 30 30 30 65 2b 30 20 20 | 20 00 00 00 ff fe 05 01 |000e+0 | .......|
|000008d0| 00 09 00 07 00 13 14 20 | 32 2e 30 30 30 30 30 30 |....... |2.000000|
|000008e0| 30 30 30 30 30 65 2d 31 | 20 20 20 00 00 01 ff fe |00000e-1| .....|
|000008f0| 00 03 00 0b 00 0c 00 13 | 14 20 31 2e 31 30 32 33 |........|. 1.1023|
|00000900| 32 35 32 35 37 37 38 65 | 2d 31 20 20 20 00 00 01 |2525778e|-1 ...|
|00000910| ff fe 00 04 00 0a 00 0d | 00 13 14 2d 31 2e 31 30 |........|...-1.10|
|00000920| 32 33 32 35 32 35 37 37 | 38 65 2d 31 20 20 20 00 |23252577|8e-1 .|
|00000930| 00 00 ff fe 01 01 00 0e | 00 0d 00 13 14 2d 31 2e |........|.....-1.|
|00000940| 36 32 37 36 30 34 31 36 | 36 36 37 65 2d 35 20 20 |62760416|667e-5 |
|00000950| 20 00 00 00 ff fe 04 01 | 00 78 00 0d 00 13 14 20 | .......|.x..... |
|00000960| 30 2e 30 30 30 30 30 30 | 30 30 30 30 30 65 2b 30 |0.000000|00000e+0|
|00000970| 20 20 20 00 00 00 ff fe | 05 01 00 78 00 0d 00 13 | .....|...x....|
|00000980| 14 20 31 2e 30 30 30 30 | 30 30 30 30 30 30 30 65 |. 1.0000|0000000e|
|00000990| 2b 30 20 20 20 00 00 00 | ff fe 00 06 00 10 00 11 |+0 ...|........|
|000009a0| 00 13 14 2d 31 2e 31 30 | 32 33 32 35 32 35 37 37 |...-1.10|23252577|
|000009b0| 38 65 2d 31 20 20 20 00 | 00 00 ff fe 03 06 00 0f |8e-1 .|........|
|000009c0| 00 12 ff ff 08 63 75 62 | 65 72 6f 6f 74 74 31 04 |.....cub|eroott1.|
|000009d0| 6d b6 00 01 00 02 00 04 | 00 00 00 00 00 00 00 24 |m.......|.......$|
|000009e0| 36 ec 00 00 00 02 14 2d | 31 2e 30 30 30 30 30 30 |6......-|1.000000|
|000009f0| 30 30 30 30 30 65 2b 30 | 20 20 20 04 14 2d 31 2e |00000e+0| ..-1.|
|00000a00| 30 30 30 30 30 30 30 30 | 30 30 30 65 2b 30 20 20 |00000000|000e+0 |
|00000a10| 20 24 14 2d 35 2e 30 30 | 30 30 30 30 30 30 30 30 | $.-5.00|00000000|
|00000a20| 30 65 2b 30 20 20 20 01 | 14 20 35 2e 30 30 30 30 |0e+0 .|. 5.0000|
|00000a30| 30 30 30 30 30 30 30 65 | 2b 30 20 20 20 24 01 75 |0000000e|+0 $.u|
|00000a40| 35 2e 30 30 30 30 30 30 | 30 30 30 30 30 65 2b 30 |5.000000|00000e+0|
|00000a50| 20 20 20 0a 01 75 31 2e | 30 30 30 30 30 30 30 30 | ..u1.|00000000|
|00000a60| 30 30 30 65 2b 31 20 20 | 20 18 01 75 00 24 08 90 |000e+1 | ..u.$..|
|00000a70| 00 00 00 00 00 05 a0 03 | 40 81 19 62 00 00 00 00 |........|@..b....|
|00000a80| 01 00 00 14 00 08 00 24 | 2e 44 00 94 00 24 30 78 |.......$|.D...$0x|
|00000a90| 14 20 34 2e 33 33 36 38 | 30 38 36 38 39 39 34 65 |. 4.3368|0868994e|
|00000aa0| 2d 31 39 20 20 00 00 00 | ff fe 04 06 00 78 00 12 |-19 ...|.....x..|
|00000ab0| ff ff 14 20 31 2e 30 30 | 30 30 30 30 30 30 30 30 |... 1.00|00000000|
|00000ac0| 30 65 2b 30 20 20 20 00 | 00 00 ff fe 05 06 00 78 |0e+0 .|.......x|
|00000ad0| 00 12 ff ff 14 20 33 2e | 30 30 30 30 30 30 30 30 |..... 3.|00000000|
|00000ae0| 30 30 30 65 2b 30 20 20 | 20 00 00 00 ff fe 05 06 |000e+0 | .......|
|00000af0| 00 78 00 12 ff ff 14 20 | 33 2e 33 33 33 33 33 33 |.x..... |3.333333|
|00000b00| 33 33 33 33 33 65 2d 31 | 20 20 20 00 00 01 ff fe |33333e-1| .....|
|00000b10| 00 03 00 01 00 02 ff ff | 14 20 37 2e 35 36 39 33 |........|. 7.5693|
|00000b20| 31 38 30 36 35 34 39 65 | 2d 37 20 20 20 00 00 01 |1806549e|-7 ...|
|00000b30| ff fe 00 04 00 00 00 03 | ff ff 14 20 34 2e 33 33 |........|... 4.33|
|00000b40| 36 38 30 38 36 38 39 39 | 34 65 2d 31 39 20 20 00 |68086899|4e-19 .|
|00000b50| 00 00 ff fe 04 04 00 78 | 00 03 ff ff 14 20 30 2e |.......x|..... 0.|
|00000b60| 30 30 30 30 30 30 30 30 | 30 30 30 65 2b 30 20 20 |00000000|000e+0 |
|00000b70| 20 00 00 00 ff fe 05 04 | 00 78 00 03 ff ff 14 20 | .......|.x..... |
|00000b80| 31 2e 30 30 30 30 30 30 | 30 30 30 30 30 65 2b 30 |1.000000|00000e+0|
|00000b90| 20 20 20 00 00 00 ff fe | 00 0c 00 05 00 06 ff ff | .....|........|
|00000ba0| 14 20 37 2e 35 36 39 33 | 31 38 30 36 35 34 39 65 |. 7.5693|1806549e|
|00000bb0| 2d 37 20 20 20 00 00 01 | ff fe 03 0c 00 04 00 07 |-7 ...|........|
|00000bc0| 00 13 14 2d 31 2e 36 32 | 37 36 30 34 31 36 36 36 |...-1.62|76041666|
|00000bd0| 37 65 2d 35 20 20 20 00 | 00 00 ff fe 04 0c 00 78 |7e-5 .|.......x|
|00000be0| 00 07 00 13 14 20 31 2e | 36 32 37 36 30 34 31 36 |..... 1.|62760416|
|00000bf0| 36 36 37 65 2d 35 20 20 | 20 00 00 00 ff fe 01 01 |667e-5 | .......|
|00000c00| 00 09 00 07 00 13 14 20 | 31 2e 30 30 30 30 30 30 |....... |1.000000|
|00000c10| 30 30 30 30 30 65 2b 30 | 20 20 20 00 00 00 ff fe |00000e+0| .....|
|00000c20| 05 01 00 09 00 07 00 13 | 14 20 33 2e 30 30 30 30 |........|. 3.0000|
|00000c30| 30 30 30 30 30 30 30 65 | 2b 30 20 20 20 00 00 00 |0000000e|+0 ...|
|00000c40| ff fe 05 01 00 09 00 07 | 00 13 14 20 33 2e 33 33 |........|... 3.33|
|00000c50| 33 33 33 33 33 33 33 33 | 33 65 2d 31 20 20 20 00 |33333333|3e-1 .|
|00000c60| 00 01 ff fe 00 03 00 0b | 00 0c 00 13 14 20 32 2e |........|..... 2.|
|00000c70| 35 33 34 32 35 30 38 33 | 31 34 39 65 2d 32 20 20 |53425083|149e-2 |
|00000c80| 20 00 00 01 ff fe 00 04 | 00 0a 00 0d 00 13 14 2d | .......|.......-|
|00000c90| 32 2e 35 33 34 32 35 30 | 38 33 31 34 39 65 2d 32 |2.534250|83149e-2|
|00000ca0| 20 20 20 00 00 00 ff fe | 01 01 00 0e 00 0d 00 13 | .....|........|
|00000cb0| 14 2d 31 2e 36 32 37 36 | 30 34 31 36 36 36 37 65 |.-1.6276|0416667e|
|00000cc0| 2d 35 20 20 20 00 00 00 | ff fe 04 01 00 78 00 0d |-5 ...|.....x..|
|00000cd0| 00 13 14 20 30 2e 30 30 | 30 30 30 30 30 30 30 30 |... 0.00|00000000|
|00000ce0| 30 65 2b 30 20 20 20 00 | 00 00 ff fe 05 01 00 78 |0e+0 .|.......x|
|00000cf0| 00 0d 00 13 14 20 31 2e | 30 30 30 30 30 30 30 30 |..... 1.|00000000|
|00000d00| 30 30 30 65 2b 30 20 20 | 20 00 00 00 ff fe 00 06 |000e+0 | .......|
|00000d10| 00 10 00 11 00 13 14 2d | 32 2e 35 33 34 32 35 30 |.......-|2.534250|
|00000d20| 38 33 31 34 39 65 2d 32 | 20 20 20 00 00 00 ff fe |83149e-2| .....|
|00000d30| 03 06 00 0f 00 12 ff ff | 00 01 00 2b 00 06 00 94 |........|...+....|
|00000d40| 00 b4 00 24 36 ec 02 00 | 00 76 00 00 00 00 00 00 |...$6...|.v......|
|00000d50| 00 00 00 64 00 f0 01 5e | 01 ea 00 24 39 a4 02 00 |...d...^|...$9...|
|00000d60| 00 76 00 00 00 00 00 00 | 00 00 00 3c 00 c8 01 36 |.v......|...<...6|
|00000d70| 01 c2 00 24 36 ec 02 00 | 00 76 00 00 00 00 00 00 |...$6...|.v......|
|00000d80| 01 00 00 3c 00 c8 01 36 | 01 c2 00 24 36 ec 02 00 |...<...6|...$6...|
|00000d90| 00 76 00 00 00 00 00 00 | 00 16 00 03 13 48 61 6e |.v......|.....Han|
|00000da0| 64 2d 64 72 61 77 6e 20 | 46 75 6e 63 74 69 6f 6e |d-drawn |Function|
|00000db0| 00 00 00 98 06 0d 68 61 | 6e 64 5f 64 72 61 77 6e |......ha|nd_drawn|
|00000dc0| 28 78 29 02 2d 35 01 35 | 02 2d 35 01 35 01 74 7c |(x).-5.5|.-5.5.t||
|00000dd0| 54 68 69 73 20 66 75 6e | 63 74 69 6f 6e 20 77 61 |This fun|ction wa|
|00000de0| 73 20 73 6b 65 74 63 68 | 65 64 20 69 6e 20 61 73 |s sketch|ed in as|
|00000df0| 20 61 20 67 72 61 70 68 | 2e 20 20 20 59 6f 75 20 | a graph|. You |
|00000e00| 63 61 6e 20 73 74 69 6c | 6c 20 66 69 6e 64 20 69 |can stil|l find i|
|00000e10| 74 73 20 64 65 72 69 76 | 61 74 69 76 65 73 2c 20 |ts deriv|atives, |
|00000e20| 62 75 74 20 74 68 65 20 | 73 65 63 6f 6e 64 20 64 |but the |second d|
|00000e30| 65 72 69 76 61 74 69 76 | 65 20 69 73 20 73 6f 72 |erivativ|e is sor|
|00000e40| 74 20 6f 66 20 22 77 69 | 6c 64 2e 22 00 03 19 50 |t of "wi|ld."...P|
|00000e50| 72 65 76 69 6f 75 73 20 | 45 78 61 6d 70 6c 65 20 |revious |Example |
|00000e60| 45 6e 6c 61 72 67 65 64 | 00 00 00 8a 06 0d 68 61 |Enlarged|......ha|
|00000e70| 6e 64 5f 64 72 61 77 6e | 28 78 29 04 2d 30 2e 35 |nd_drawn|(x).-0.5|
|00000e80| 03 30 2e 35 02 2d 35 01 | 35 01 74 6a 54 68 69 73 |.0.5.-5.|5.tjThis|
|00000e90| 20 73 68 6f 77 73 20 61 | 20 62 6c 6f 77 2d 75 70 | shows a| blow-up|
|00000ea0| 20 6f 66 20 70 61 72 74 | 20 6f 66 20 74 68 65 20 | of part| of the |
|00000eb0| 68 61 6e 64 2d 64 72 61 | 77 6e 20 66 75 6e 63 74 |hand-dra|wn funct|
|00000ec0| 69 6f 6e 73 2c 20 72 65 | 76 65 61 6c 69 6e 67 20 |ions, re|vealing |
|00000ed0| 6d 6f 72 65 20 6f 66 20 | 74 68 65 20 64 65 74 61 |more of |the deta|
|00000ee0| 69 6c 20 6f 66 20 74 68 | 65 20 64 65 72 69 76 61 |il of th|e deriva|
|00000ef0| 74 69 76 65 73 2e 00 03 | 0a 50 72 6f 62 6c 65 6d |tives...|.Problem|
|00000f00| 20 31 61 00 00 00 9e 06 | 09 78 5e 34 20 2d 20 78 | 1a.....|.x^4 - x|
|00000f10| 5e 33 04 2d 31 2e 35 03 | 31 2e 35 02 2d 31 01 32 |^3.-1.5.|1.5.-1.2|
|00000f20| 01 74 82 4e 6f 74 65 20 | 74 68 61 74 20 68 61 76 |.t.Note |that hav|
|00000f30| 69 6e 67 20 61 20 64 65 | 72 69 76 61 74 69 76 65 |ing a de|rivative|
|00000f40| 20 65 71 75 61 6c 20 74 | 6f 20 7a 65 72 6f 20 61 | equal t|o zero a|
|00000f50| 74 20 61 20 63 65 72 74 | 61 69 6e 20 70 6f 69 6e |t a cert|ain poin|
|00000f60| 74 20 64 6f 65 73 20 6e | 6f 74 20 6e 65 63 65 73 |t does n|ot neces|
|00000f70| 73 61 72 69 6c 79 20 6d | 65 61 6e 20 74 68 61 74 |sarily m|ean that|
|00000f80| 20 79 6f 75 20 68 61 76 | 65 20 61 20 6d 61 78 69 | you hav|e a maxi|
|00000f90| 6d 75 6d 20 6f 72 20 6d | 69 6e 69 6d 75 6d 20 74 |mum or m|inimum t|
|00000fa0| 68 65 72 65 2e 00 03 0a | 50 72 6f 62 6c 65 6d 20 |here....|Problem |
|00000fb0| 31 62 00 00 00 a9 06 06 | 74 61 6e 28 78 29 02 2d |1b......|tan(x).-|
|00000fc0| 35 01 35 02 2d 35 01 35 | 01 74 94 54 68 65 20 64 |5.5.-5.5|.t.The d|
|00000fd0| 65 72 69 76 61 74 69 76 | 65 20 6f 66 20 74 61 6e |erivativ|e of tan|
|00000fe0| 28 78 29 20 69 73 20 61 | 6c 77 61 79 73 20 70 6f |(x) is a|lways po|
|00000ff0| 73 69 74 69 76 65 20 28 | 61 74 20 6c 65 61 73 74 |sitive (|at least|
|00001000| 20 77 68 65 72 65 20 69 | 74 20 65 78 69 73 74 73 | where i|t exists|
|00001010| 29 2e 20 20 48 6f 77 65 | 76 65 72 2c 20 74 68 65 |). Howe|ver, the|
|00001020| 20 67 72 61 70 68 20 69 | 73 20 63 6f 6e 63 61 76 | graph i|s concav|
|00001030| 65 20 75 70 20 61 74 20 | 73 6f 6d 65 20 70 6f 69 |e up at |some poi|
|00001040| 6e 74 73 20 61 6e 64 20 | 63 6f 6e 63 61 76 65 20 |nts and |concave |
|00001050| 64 6f 77 6e 20 61 74 20 | 6f 74 68 65 72 73 2e 00 |down at |others..|
|00001060| 03 0a 50 72 6f 62 6c 65 | 6d 20 31 63 00 00 00 71 |..Proble|m 1c...q|
|00001070| 06 03 32 5e 78 02 2d 33 | 01 33 01 30 01 36 01 74 |..2^x.-3|.3.0.6.t|
|00001080| 60 54 68 65 20 67 72 61 | 70 68 20 6f 66 20 79 20 |`The gra|ph of y |
|00001090| 3d 20 32 5e 78 20 69 73 | 20 61 6c 77 61 79 73 20 |= 2^x is| always |
|000010a0| 69 6e 63 72 65 61 73 69 | 6e 67 20 61 6e 64 20 63 |increasi|ng and c|
|000010b0| 6f 6e 63 61 76 65 20 75 | 70 2e 20 20 54 68 65 20 |oncave u|p. The |
|000010c0| 73 61 6d 65 20 69 73 20 | 74 72 75 65 20 66 6f 72 |same is |true for|
|000010d0| 20 69 74 73 20 64 65 72 | 69 76 61 74 69 76 65 73 | its der|ivatives|
|000010e0| 2e 00 03 0a 50 72 6f 62 | 6c 65 6d 20 31 64 00 00 |....Prob|lem 1d..|
|000010f0| 00 82 06 0a 78 20 2b 20 | 63 6f 73 28 78 29 02 2d |....x + |cos(x).-|
|00001100| 38 01 38 02 2d 38 01 38 | 01 74 69 49 66 20 79 6f |8.8.-8.8|.tiIf yo|
|00001110| 75 20 61 64 64 20 63 6f | 73 28 78 29 20 74 6f 20 |u add co|s(x) to |
|00001120| 78 2c 20 74 68 65 20 72 | 65 73 75 6c 74 69 6e 67 |x, the r|esulting|
|00001130| 20 66 75 6e 63 74 69 6f | 6e 73 20 22 6c 65 76 65 | functio|ns "leve|
|00001140| 6c 73 20 6f 66 66 22 20 | 65 76 65 72 79 20 b9 20 |ls off" |every . |
|00001150| 75 6e 69 74 73 2c 20 62 | 75 74 20 6e 65 76 65 72 |units, b|ut never|
|00001160| 20 61 63 74 75 61 6c 6c | 79 20 64 65 63 72 65 61 | actuall|y decrea|
|00001170| 73 65 73 2e 00 03 0a 50 | 72 6f 62 6c 65 6d 20 31 |ses....P|roblem 1|
|00001180| 65 00 00 00 a7 06 0a 78 | 20 2a 20 63 6f 73 28 78 |e......x| * cos(x|
|00001190| 29 03 2d 31 32 02 31 32 | 03 2d 31 32 02 31 32 01 |).-12.12|.-12.12.|
|000011a0| 74 8a 4d 75 6c 74 69 70 | 6c 69 6e 67 20 78 20 62 |t.Multip|ling x b|
|000011b0| 79 20 63 6f 73 28 78 29 | 20 67 69 76 65 73 20 61 |y cos(x)| gives a|
|000011c0| 20 66 75 6e 63 74 69 6f | 6e 20 74 68 61 74 20 68 | functio|n that h|
|000011d0| 61 73 20 62 69 67 67 65 | 72 20 61 6e 64 20 62 69 |as bigge|r and bi|
|000011e0| 67 67 65 72 20 6f 73 63 | 69 6c 6c 61 74 69 6f 6e |gger osc|illation|
|000011f0| 73 2e 20 20 28 4e 6f 74 | 65 20 74 68 61 74 20 74 |s. (Not|e that t|
|00001200| 68 65 20 64 65 72 69 76 | 61 74 69 76 65 20 6f 66 |he deriv|ative of|
|00001210| 20 74 68 69 73 20 6f 64 | 64 20 66 75 6e 63 74 69 | this od|d functi|
|00001220| 6f 6e 20 69 73 20 65 76 | 65 6e 2e 29 00 03 16 45 |on is ev|en.)...E|
|00001230| 78 61 6d 70 6c 65 20 66 | 6f 72 20 65 78 65 72 63 |xample f|or exerc|
|00001240| 69 73 65 20 31 00 00 00 | 1e 06 0e 32 5e 78 20 2b |ise 1...|...2^x +|
|00001250| 20 78 2a 63 6f 73 28 78 | 29 02 2d 35 01 35 02 2d | x*cos(x|).-5.5.-|
|00001260| 35 02 31 30 01 74 00 00 | 03 0a 45 78 61 6d 70 6c |5.10.t..|..Exampl|
|00001270| 65 20 33 61 00 00 00 cf | 06 07 63 75 73 70 28 78 |e 3a....|..cusp(x|
|00001280| 29 04 2d 31 2e 35 03 31 | 2e 36 02 2d 32 01 32 01 |).-1.5.1|.6.-2.2.|
|00001290| 74 b5 54 68 69 73 20 66 | 75 6e 63 74 69 6f 6e 20 |t.This f|unction |
|000012a0| 68 61 73 20 61 20 63 75 | 73 70 20 61 74 20 30 2e |has a cu|sp at 0.|
|000012b0| 20 20 49 66 20 74 68 65 | 20 66 75 6e 63 74 69 6f | If the| functio|
|000012c0| 6e 20 69 73 20 63 6f 6e | 74 69 6e 75 6f 75 73 20 |n is con|tinuous |
|000012d0| 61 6e 64 20 74 68 65 20 | 64 65 72 69 76 61 74 69 |and the |derivati|
|000012e0| 76 65 20 61 70 70 72 6f | 61 63 68 65 73 20 70 6c |ve appro|aches pl|
|000012f0| 75 73 20 69 6e 66 69 6e | 69 74 79 20 66 72 6f 6d |us infin|ity from|
|00001300| 20 6f 6e 65 20 64 69 72 | 65 63 74 69 6f 6e 20 61 | one dir|ection a|
|00001310| 6e 64 20 6d 69 6e 75 73 | 20 69 6e 66 69 6e 69 74 |nd minus| infinit|
|00001320| 79 20 66 72 6f 6d 20 74 | 68 65 20 6f 74 68 65 72 |y from t|he other|
|00001330| 2c 20 74 68 65 6e 20 79 | 6f 75 20 68 61 76 65 20 |, then y|ou have |
|00001340| 61 20 63 75 73 70 2e 00 | 03 0a 45 78 61 6d 70 6c |a cusp..|..Exampl|
|00001350| 65 20 33 62 00 00 00 b3 | 06 0a 61 62 73 28 78 5e |e 3b....|..abs(x^|
|00001360| 33 2d 31 29 02 2d 31 01 | 32 02 2d 35 01 35 01 74 |3-1).-1.|2.-5.5.t|
|00001370| 9a 41 20 63 75 73 70 20 | 69 73 20 6e 6f 74 20 74 |.A cusp |is not t|
|00001380| 68 65 20 73 61 6d 65 20 | 61 73 20 61 20 22 63 6f |he same |as a "co|
|00001390| 72 6e 65 72 22 2e 20 20 | 41 74 20 61 20 63 6f 72 |rner". |At a cor|
|000013a0| 6e 65 72 2c 20 74 68 65 | 20 64 65 72 69 76 61 74 |ner, the| derivat|
|000013b0| 69 76 65 20 68 61 73 20 | 6f 6e 6c 79 20 61 20 66 |ive has |only a f|
|000013c0| 69 6e 69 74 65 20 6a 75 | 6d 70 20 72 61 74 68 65 |inite ju|mp rathe|
|000013d0| 72 20 74 68 61 6e 20 61 | 6e 20 69 6e 66 69 6e 69 |r than a|n infini|
|000013e0| 74 65 20 6f 6e 65 2e 20 | 20 54 68 69 73 20 66 75 |te one. | This fu|
|000013f0| 6e 63 74 69 6f 6e 20 68 | 61 73 20 61 20 63 6f 72 |nction h|as a cor|
|00001400| 6e 65 72 20 61 74 20 78 | 3d 31 2e 00 03 0a 45 78 |ner at x|=1....Ex|
|00001410| 61 6d 70 6c 65 20 33 63 | 00 00 01 01 06 0b 63 75 |ample 3c|......cu|
|00001420| 62 65 72 6f 6f 74 28 78 | 29 02 2d 31 03 31 2e 31 |beroot(x|).-1.1.1|
|00001430| 02 2d 32 01 32 01 74 e5 | 41 20 76 65 72 74 69 63 |.-2.2.t.|A vertic|
|00001440| 61 6c 20 74 61 6e 67 65 | 6e 74 20 6c 69 6e 65 20 |al tange|nt line |
|00001450| 6f 63 63 75 72 73 20 77 | 68 65 6e 20 74 68 65 20 |occurs w|hen the |
|00001460| 64 65 72 69 76 61 74 69 | 76 65 20 61 70 70 72 6f |derivati|ve appro|
|00001470| 61 63 68 65 73 20 70 6c | 75 73 20 69 6e 66 69 6e |aches pl|us infin|
|00001480| 69 74 79 20 66 72 6f 6d | 20 62 6f 74 68 20 64 69 |ity from| both di|
|00001490| 72 65 63 74 69 6f 6e 73 | 2c 20 6f 72 20 6d 69 6e |rections|, or min|
|000014a0| 75 73 20 69 6e 66 69 6e | 69 74 79 20 66 72 6f 6d |us infin|ity from|
|000014b0| 20 62 6f 74 68 20 64 69 | 72 65 63 74 69 6f 6e 73 | both di|rections|
|000014c0| 2e 20 20 28 4e 6f 74 65 | 3a 20 20 54 68 69 73 20 |. (Note|: This |
|000014d0| 66 75 6e 63 74 69 6f 6e | 20 69 73 20 63 6f 6e 74 |function| is cont|
|000014e0| 69 6e 75 6f 75 73 20 61 | 74 20 30 2c 20 65 76 65 |inuous a|t 0, eve|
|000014f0| 6e 20 74 68 6f 75 67 68 | 20 69 74 20 6d 69 67 68 |n though| it migh|
|00001500| 74 20 6e 6f 74 20 6c 6f | 6f 6b 20 69 74 20 6f 6e |t not lo|ok it on|
|00001510| 20 74 68 69 73 20 67 72 | 61 70 68 2e 29 00 03 0a | this gr|aph.)...|
|00001520| 45 78 61 6d 70 6c 65 20 | 33 64 00 00 00 6e 06 26 |Example |3d...n.&|
|00001530| 63 75 62 65 72 6f 6f 74 | 28 28 78 2d 31 29 5e 32 |cuberoot|((x-1)^2|
|00001540| 29 20 2d 20 66 69 66 74 | 68 72 6f 6f 74 28 28 78 |) - fift|hroot((x|
|00001550| 2b 31 29 5e 32 29 02 2d | 32 01 32 02 2d 32 01 32 |+1)^2).-|2.2.-2.2|
|00001560| 01 74 39 4f 66 20 63 6f | 75 72 73 65 2c 20 61 20 |.t9Of co|urse, a |
|00001570| 73 69 6e 67 6c 65 20 66 | 75 6e 63 74 69 6f 6e 20 |single f|unction |
|00001580| 63 61 6e 20 68 61 76 65 | 20 6d 6f 72 65 20 74 68 |can have| more th|
|00001590| 61 6e 20 6f 6e 65 20 63 | 75 73 70 2e 00 01 0a 50 |an one c|usp....P|
|000015a0| 72 6f 62 6c 65 6d 20 32 | 61 00 00 00 68 05 13 28 |roblem 2|a...h..(|
|000015b0| 78 5e 32 2b 31 29 20 2f | 20 28 78 5e 32 20 2d 20 |x^2+1) /| (x^2 - |
|000015c0| 31 29 02 2d 35 01 35 02 | 2d 35 01 35 48 56 65 72 |1).-5.5.|-5.5HVer|
|000015d0| 74 69 63 61 6c 20 61 73 | 79 6d 70 74 6f 74 65 73 |tical as|ymptotes|
|000015e0| 20 61 74 20 78 3d 31 20 | 61 6e 64 20 61 74 20 78 | at x=1 |and at x|
|000015f0| 20 3d 20 2d 31 3b 20 68 | 6f 72 69 7a 6f 6e 74 61 | = -1; h|orizonta|
|00001600| 6c 20 61 73 79 6d 70 74 | 6f 74 65 20 61 74 20 79 |l asympt|ote at y|
|00001610| 20 3d 20 31 2e 00 01 0a | 50 72 6f 62 6c 65 6d 20 | = 1....|Problem |
|00001620| 32 62 00 00 00 68 05 1f | 28 33 2a 78 5e 32 20 2d |2b...h..|(3*x^2 -|
|00001630| 20 32 2a 78 20 2d 20 34 | 29 20 2f 20 28 32 2a 78 | 2*x - 4|) / (2*x|
|00001640| 5e 32 20 2b 20 31 29 03 | 2d 31 30 02 31 30 03 2d |^2 + 1).|-10.10.-|
|00001650| 31 30 02 31 30 38 4e 6f | 20 76 65 72 74 69 63 61 |10.108No| vertica|
|00001660| 6c 20 61 73 79 6d 70 74 | 6f 74 65 73 3b 20 68 6f |l asympt|otes; ho|
|00001670| 72 69 7a 6f 6e 74 61 6c | 20 61 73 79 6d 70 74 6f |rizontal| asympto|
|00001680| 74 65 20 61 74 20 79 20 | 3d 20 33 2f 32 2e 00 01 |te at y |= 3/2...|
|00001690| 0a 50 72 6f 62 6c 65 6d | 20 32 63 00 00 00 5b 05 |.Problem| 2c...[.|
|000016a0| 13 28 33 2a 78 5e 33 2b | 78 29 20 2f 20 28 78 5e |.(3*x^3+|x) / (x^|
|000016b0| 33 2d 31 29 02 2d 35 01 | 35 02 2d 35 01 35 3b 56 |3-1).-5.|5.-5.5;V|
|000016c0| 65 72 74 69 63 61 6c 20 | 61 73 79 6d 70 74 6f 74 |ertical |asymptot|
|000016d0| 65 20 61 74 20 78 20 3d | 20 31 3b 20 68 6f 72 69 |e at x =| 1; hori|
|000016e0| 7a 6f 6e 74 61 6c 20 61 | 73 79 6d 70 74 6f 74 65 |zontal a|symptote|
|000016f0| 20 61 74 20 79 20 3d 20 | 33 2e 00 01 0a 50 72 6f | at y = |3....Pro|
|00001700| 62 6c 65 6d 20 32 64 00 | 00 00 49 05 09 31 2f 28 |blem 2d.|..I..1/(|
|00001710| 78 5e 32 2b 31 29 02 2d | 35 01 35 02 2d 35 01 35 |x^2+1).-|5.5.-5.5|
|00001720| 33 4e 6f 20 76 65 72 74 | 69 63 61 6c 20 61 73 79 |3No vert|ical asy|
|00001730| 6d 70 74 6f 74 65 73 3b | 20 68 6f 72 69 7a 6f 6e |mptotes;| horizon|
|00001740| 74 61 6c 20 61 73 79 6d | 70 74 6f 74 65 20 79 20 |tal asym|ptote y |
|00001750| 3d 20 30 2e 00 01 0a 50 | 72 6f 62 6c 65 6d 20 32 |= 0....P|roblem 2|
|00001760| 65 00 00 00 57 05 09 31 | 2f 28 78 5e 32 2d 31 29 |e...W..1|/(x^2-1)|
|00001770| 02 2d 35 01 35 02 2d 35 | 01 35 41 56 65 72 74 69 |.-5.5.-5|.5AVerti|
|00001780| 63 61 6c 20 61 73 79 6d | 70 74 6f 74 65 73 20 78 |cal asym|ptotes x|
|00001790| 20 3d 20 31 20 61 6e 64 | 20 78 20 3d 20 2d 31 3b | = 1 and| x = -1;|
|000017a0| 20 68 6f 72 69 7a 6f 6e | 74 61 6c 20 61 73 79 6d | horizon|tal asym|
|000017b0| 70 74 6f 74 65 20 79 20 | 3d 20 30 2e 00 01 0a 50 |ptote y |= 0....P|
|000017c0| 72 6f 62 6c 65 6d 20 32 | 66 00 00 00 b5 05 0b 78 |roblem 2|f......x|
|000017d0| 5e 33 2f 28 78 5e 32 2b | 31 29 02 2d 35 01 35 02 |^3/(x^2+|1).-5.5.|
|000017e0| 2d 35 01 35 9d 54 68 69 | 73 20 66 75 6e 63 74 69 |-5.5.Thi|s functi|
|000017f0| 6f 6e 20 68 61 73 20 6e | 6f 20 76 65 72 74 69 63 |on has n|o vertic|
|00001800| 61 6c 20 6f 72 20 68 6f | 72 69 7a 6f 6e 74 61 6c |al or ho|rizontal|
|00001810| 20 61 73 79 6d 70 74 6f | 74 65 73 2e 20 20 48 6f | asympto|tes. Ho|
|00001820| 77 65 76 65 72 2c 20 74 | 68 65 20 6c 69 6e 65 20 |wever, t|he line |
|00001830| 79 20 3d 20 78 20 69 73 | 20 61 20 22 73 6b 65 77 |y = x is| a "skew|
|00001840| 22 20 61 73 79 6d 70 74 | 6f 74 65 2e 20 20 28 22 |" asympt|ote. ("|
|00001850| 53 6b 65 77 22 20 68 65 | 72 65 20 6a 75 73 74 20 |Skew" he|re just |
|00001860| 6d 65 61 6e 73 20 6e 6f | 74 20 68 6f 72 69 7a 6f |means no|t horizo|
|00001870| 6e 74 61 6c 20 6f 72 20 | 76 65 72 74 69 63 61 6c |ntal or |vertical|
|00001880| 2e 29 00 01 0a 50 72 6f | 62 6c 65 6d 20 32 67 00 |.)...Pro|blem 2g.|
|00001890| 00 00 68 05 0d 78 5e 33 | 2f 28 32 2a 78 5e 32 2d |..h..x^3|/(2*x^2-|
|000018a0| 31 29 02 2d 35 01 35 02 | 2d 35 01 35 4e 56 65 72 |1).-5.5.|-5.5NVer|
|000018b0| 74 69 63 61 6c 20 61 73 | 79 6d 70 74 6f 74 65 73 |tical as|ymptotes|
|000018c0| 20 78 20 3d 20 31 20 61 | 6e 64 20 78 20 3d 20 2d | x = 1 a|nd x = -|
|000018d0| 31 3b 20 74 68 65 20 6c | 69 6e 65 20 79 20 3d 20 |1; the l|ine y = |
|000018e0| 28 31 2f 32 29 78 20 69 | 73 20 61 20 73 6b 65 77 |(1/2)x i|s a skew|
|000018f0| 20 61 73 79 6d 70 74 6f | 74 65 2e 00 01 0a 50 72 | asympto|te....Pr|
|00001900| 6f 62 6c 65 6d 20 32 68 | 00 00 00 62 05 0f 28 32 |oblem 2h|...b..(2|
|00001910| 2a 78 5e 32 29 2f 28 33 | 2a 78 2b 32 29 02 2d 35 |*x^2)/(3|*x+2).-5|
|00001920| 01 35 02 2d 35 01 35 46 | 56 65 72 74 69 63 61 6c |.5.-5.5F|Vertical|
|00001930| 20 61 73 79 6d 70 74 6f | 74 65 20 78 20 3d 20 2d | asympto|te x = -|
|00001940| 20 32 2f 33 3b 20 74 68 | 65 20 6c 69 6e 65 20 79 | 2/3; th|e line y|
|00001950| 20 3d 20 28 32 2f 33 29 | 78 20 69 73 20 61 20 73 | = (2/3)|x is a s|
|00001960| 6b 65 77 20 61 73 79 6d | 70 74 6f 74 65 2e 00 01 |kew asym|ptote...|
|00001970| 0a 50 72 6f 62 6c 65 6d | 20 32 69 00 00 00 b0 05 |.Problem| 2i.....|
|00001980| 0b 73 71 72 74 28 78 5e | 32 2b 31 29 01 30 01 35 |.sqrt(x^|2+1).0.5|
|00001990| 01 30 01 35 9a 4e 6f 74 | 20 61 6c 6c 20 66 75 6e |.0.5.Not| all fun|
|000019a0| 63 74 69 6f 6e 73 20 77 | 69 74 68 20 61 73 79 6d |ctions w|ith asym|
|000019b0| 70 74 6f 74 65 73 20 61 | 72 65 20 6d 61 64 65 20 |ptotes a|re made |
|000019c0| 62 79 20 64 69 76 69 64 | 69 6e 67 20 6f 6e 65 20 |by divid|ing one |
|000019d0| 70 6f 6c 79 6e 6f 6d 69 | 61 6c 20 62 79 20 61 6e |polynomi|al by an|
|000019e0| 6f 74 68 65 72 2e 20 20 | 54 68 69 73 20 66 75 6e |other. |This fun|
|000019f0| 63 74 69 6f 6e 20 68 61 | 73 20 74 68 65 20 6c 69 |ction ha|s the li|
|00001a00| 6e 65 20 79 20 3d 20 78 | 20 61 73 20 61 20 73 6b |ne y = x| as a sk|
|00001a10| 65 77 20 61 73 79 6d 70 | 74 6f 74 65 2e 20 20 43 |ew asymp|tote. C|
|00001a20| 61 6e 20 79 6f 75 20 73 | 65 65 20 77 68 79 3f 00 |an you s|ee why?.|
|00001a30| 01 0a 50 72 6f 62 6c 65 | 6d 20 32 6a 00 00 00 ca |..Proble|m 2j....|
|00001a40| 05 15 73 71 72 74 28 20 | 28 78 2d 31 29 20 2a 20 |..sqrt( |(x-1) * |
|00001a50| 28 78 2d 32 29 20 29 02 | 2d 31 01 35 02 2d 31 01 |(x-2) ).|-1.5.-1.|
|00001a60| 35 a8 54 68 69 73 20 66 | 75 6e 63 74 69 6f 6e 20 |5.This f|unction |
|00001a70| 61 6c 73 6f 20 68 61 73 | 20 79 20 3d 20 78 20 61 |also has| y = x a|
|00001a80| 73 20 61 20 73 6b 65 77 | 20 61 73 79 6d 70 74 6f |s a skew| asympto|
|00001a90| 74 65 2e 20 20 28 4e 6f | 74 69 63 65 20 74 68 65 |te. (No|tice the|
|00001aa0| 20 64 6f 6d 61 69 6e 2e | 20 20 54 72 79 20 67 72 | domain.| Try gr|
|00001ab0| 61 70 68 69 6e 67 20 28 | 78 2d 31 29 2a 78 2d 32 |aphing (|x-1)*x-2|
|00001ac0| 29 20 6f 6e 20 74 68 65 | 20 73 61 6d 65 20 73 65 |) on the| same se|
|00001ad0| 74 20 6f 66 20 61 78 65 | 73 20 69 66 20 79 6f 75 |t of axe|s if you|
|00001ae0| 20 77 61 6e 74 20 74 6f | 20 75 6e 64 65 72 73 74 | want to| underst|
|00001af0| 61 6e 64 20 74 68 69 73 | 20 66 75 6e 63 74 69 6f |and this| functio|
|00001b00| 6e 20 62 65 74 74 65 72 | 2e 29 |n better|.) |
+--------+-------------------------+-------------------------+--------+--------+